

Vertical Agriculture

CENE 486C

Chalmer Bitsoi, Zeb Davis, Sam Just, Matt Schraan December 1, 2017

An Introduction To Vertical Agriculture

• What:

- A method used to grow crops that utilizes vertical space
- May utilize various systems including hydroponics or aquaponics

• Why:

- Ensures food security by increasing the amount of crops that can be grown in limited space
- Can be utilized in urban settings where crop land does not exist

• Our Objective:

• Create a small scale prototype

Figure 1: Backyard Hydroponics [1] Matthew, 2

Background and Relevance

Figure 2: Commercial Vertical Agriculture Hydroponic System [3]

- Most commercial scale vertical agriculture systems utilize hydroponics
- Hydroponics is a method that uses a controlled environment to grow crops without soil
- Hydroponics is a growing method of farming that accounts for only \$600 million of the \$140 billion industry [2]
- Hydroponic systems may be vertical or horizontal

Impacts

Social	Economic	Environmental
 Contributes to improved diets and safer food Brings agriculture to urban settings Reshapes rural communities Can more effectively support a growing population 	 Creates jobs in the technical sector Improves productivity and efficient use of resources Production in any climate, season and time of day Will produce crops at an increased rate 	 Shifts away from unsustainable methods of farming A solution to soil degradation caused by agriculture Decrease in pollution generated Uses roughly 10-20% of land needed for conventional farming [3]

Design Selection: Water

Water Component Alternatives:

1. Aeroponics 2. Drip Method 3. NFT

Nutrient Film Technique (NFT):

- Most common method used for commercial scale designs
- Effective for producing leafy green vegetables

Major Design Components:

- Submersible pump
- Constant flow in the form of a thin nutrient solution film
- Water is recirculated for optimal efficiency

Figure 3: Nutrient Film Technique [4]

Design Selection: Lighting

Lighting Component Alternatives:

1. Fluorescent 2. Incandescent 3. LED

Light Emitting Diode (LED):

- Artificial Lighting similar to natural lighting
- Photosynthesis with 660 nm red and 445 nm blue wavelength
- Low level of thermal radiation
- Long operating life and is energy saving

Figure 4: LED Spectrum [5]

Design Selection: Structure

Structure Model:

- Pre-fab structure requires minimal maintenance
- 5 adjustable shelves rated for 500-pounds
- Support for water reservoir and light structure
- Circulation of the nutrient solution using pump and gravity

Figure 5: Elevation Schematic of System

Initial Construction Design

Materials:

- Frame: 5 levels of shelving
- Water Basins: Plastic Storage Containers
- Water Transport: 1/2" Plastic Tubing
- Pump: ECO 158 Submersible Pump
 - Max head: 4 ft. Output: 158 gal/hr [6]
- Growth Media: Clay Pebbles
 - Porous media with stable pH and EC
- Plant Holder: Wooden Frame
- Lighting: LED Strips
 - 440-840 nm wavelength spectrum
- Nutrient Solution: 7-4-10 (N-P-K) Ratio
 - Optimal for lettuce, arugula, and spinach [7]

Figure 6: Early Construction

Final Construction Design

Improvements:

- Changed ECO 158 to ECO 396
 - Max head: 6.5 ft. Output: 396 gal/hr
- Wooden frame changed to wire frame
 - Manipulate plant placement and root height
- Air pump and airstones added
 - Increase DO levels of water [8]
- Plastic adjustable pipe fittings added
 - Adjust water levels
- Plant screen added
 - Keep plants leaves from dipping into reservoirs
- Black sheet added
 - Block out external light from reaching plants

Figure 7: Completed System

Plant Growth Criteria & Constraints

Required Growth Parameters:

- 1. Dissolved Oxygen (DO)
 - Influences transport of nutrients and minerals
- 2. Temperature
 - Influences DO levels and uptake rates [6]
- 3. Electrical Conductivity (EC)
 - Influences water uptake
- 4. pH

Other Measures of Design Effectiveness:

- 1. Water uptake measurements
- 2. Plant growth

Figure 8: Influence of pH [9]

Test Results: Temperature and Dissolved Oxygen (DO)

Table 1: DO and Saturation Level Comparison								
Date	11/2/17	11/7/17	11/9/17	11/14/17	11/16/17	11/21/17	11/23/17	11/28/17
Temp. (°F)	70.1	70.0	65.0	70.8	67.4	69.2	67.8	70.7
DO (ppm)	-	-	<mark>7.5</mark>	<mark>7.5</mark>	<mark>7.0</mark>	6.5	6.2	6.2
Saturation Level for DO (ppm)	6.8	6.8	7.2	6.7	7.1	6.9	7.0	6.7

- Optimal temperature range: 65-80 °F [10]
- Optimal DO range: > 4.0 ppm [10]

Test Results: pH and Electrical Conductivity

Table 2: pH Measurements								
Date	11/2/17	11/7/17	11/9/17	11/14/17	11/16/17	11/21/17	11/23/17	11/28/17
рН	7.0	7.2	7.2	7.3	7.2	7.0	7.1	7.0
Adjusted pH	6.5	6.5	6.5	6.2	6.5	6.4	6.5	6.5

• Optimal pH range: 6-7 [10]

Table 3: Electrical Conductivity (EC) Measurements								
	11/2/17	11/7/17	11/9/17	11/14/17	11/16/17	11/21/17	11/23/17	11/28/17
EC (mS/cm)	-	-	-	0.76	0.66	0.89	1.11	1.05

• Optimal EC range during growth stage: 0.8-1.2 mS/cm [11]

Test Results: Water Loss

Table 4: Volume Measurements Date Top Row Middle Bottom Reservoir Total (in) Volume Volume $(x10^3 in^3)$ Row (in) Row (in) (in) (in) (gal) 11/7/17 0.45 0.75 0.75 6.30 8.25 3.36 14.56 11/9/17* 0.45 0.75 0.75 5.80 7.75 3.16 13.68 11/9/17 0.50 0.75 0.75 6.30 8.30 3.38 14.65 11/14/17* 0.45 0.85 0.75 4.70 6.70 2.73 11.82 0.45 6.30 8.25 3.36 11/14/17 0.75 0.75 14.56 11/21/17* 0.45 0.75 0.75 6.00 7.95 3.24 14.03

* volume measurements taken before changing water

Test Results: Plant Growth

Table 5: Arugula Height Measurements						
Date	Top Row (in)	Middle Row (in)	Bottom Row (in)			
11/2/17	5.50	3.20	2.30			
11/7/17	3.50	3.50	3.50			
11/9/17	4.00	3.75	3.75			
11/14/17	4.05	4.10	4.00			
11/16/17	4.11	4.23	4.05			
11/21/17	4.26	4.40	4.07			

Test Results: Plant Growth

Table 6: Lettuce Height Measurements						
Date	Top (in)	Middle (in)	Bottom (in)			
11/2/17	5.5	3	4.1			
11/7/17	Dead	Dead	3.5			
11/9/17	Dead	Dead	Dead			

- Lettuce plants weren't mature enough and couldn't handle the amount of water they were given
- Presence of aphids also weakened the lettuce
- Added more mature lettuce and are currently gathering data

Figure 9: Plant Growth

Review of Results

- **1 Month Of Testing** (11/2-11/28) :
 - Arugula grew
 - Average growth 1.25 inches
 - Spinach alive
 - Added last week (11/28)
 - Shown signs of small growth
 - All components functioning

Figure 10: Spinach Growth

Recommendations

Changes to Design:

- 1. Improve transplanting procedure
- 2. Lower water-levels to prevent drowning of plants
- 3. Select different varieties of lettuce with stronger root systems
- 4. Experiment with different growth media

Potential Future Uses:

- 1. Prototype for future testing purposes
- 2. Phytoremediation studies
- 3. Oxygen and Carbon Dioxide Uptake monitoring

Figure 11: Middle Row of System

Schedule

Remained on schedule & met milestones

Figure 13: Gantt Chart

Engineering Hours

Table 7: Staffing Hours						
Position	Rate of Pay [12]	Hours		Cost		
		Proposed	Actual	Proposed	Actual	
Project Manager	\$140/hr	120	110	\$16,800	\$15,400	
Senior Engineer	\$130/hr	190	180	\$24,700	\$23,400	
Engineering Technician #1	\$75/hr	240	300	\$17,250	\$22,500	
Engineering Technician #2	\$75/hr	240	300	\$17,250	\$22,500	
	Total	790	890	\$76,000	\$82,540	

Cost of Implementation

Table 8: Cost of Implementation						
ltem	Quantity	Cost				
LED Lights	3 rolls	\$84.00				
Shelf Rack	1 rack	\$40.00				
Reservoir/Tubing/Fittings	Lot	\$67.00				
Plant Holders (All Components)	Lot	\$89.00				
Water Pump	1 pump	\$40.00				
Air Pump/Air Stones/Hoses	Lot	\$43.00				
Testing Kit (ph, buffer, EC, TDS)	Lot	\$38.00				
Nutrient Solution	1 bottle	\$26.00				
Starter Plants	24 plants	\$30.00				
	Total To-Date	\$457.00				

References

[1] "Vertical Hydroponic System", Vertical Hydroponic System Ideas. [online] Available at:

https://i.pinimg.com/736x/a7/5c/5a/a75c5a9cd22c1a24f012e6f223b9a5a5--vertical-hydroponics-hydroponics-system.jpg [Accessed: 30 Nov. 2017]

[2] Urban Garden (2017). *Hydroponics vs. Soil – Advantages and Disadvantages*. [online] Urban Garden Supply. Available at:

http://www.urbangardensupply.net/blog/hydroponics-vs-soil-advantages-and-disadvantages/ [Accessed 1 Dec. 2017].

[3]Pilloni, A. (2017). Economics of Commercial Hydroponic Food Production. [online] PowerHouse Hydroponics. Available at:

http://www.powerhousehydroponics.com/economics-of-commercial-hydroponic-food-production/ [Accessed 1 Dec. 2017].

[4] "Hydroponic N.F.T. Systems", Home Hydroponic Systems. [online] Available at:

http://www.homehydrosystems.com/hydroponic-systems/images_systems/nft_full.gif [Accessed: 30 Nov. 2017]

[5] "Mars 600W Full Spectrum Hydro LED grow light bulb best for medical veg & bloom | eBay", eBay, 2017. [Online]. Available: https://www.ebay.com.au/itm/Mars-600-LED-Grow-Light-True-Watt-278W-Hydroponic-Indoor-Full-Spectrum-Grow-Lamp-/161818024663.

[Accessed: 30- Nov- 2017].

[6] Ecoplususa.com. (2017). Home | Eco Plus. [online] Available at: http://www.ecoplususa.com/ [Accessed 1 Dec. 2017].

[7] Gpnmag.com. (2017). Growing Hydroponic Leafy Greens – Greenhouse Product News. [online] Available at:

https://gpnmag.com/article/growing-hydroponic-leafy-greens/ [Accessed 1 Dec. 2017].

[8] Seyffarth, K. (2017). Aquarium Air Pumps - The First Tank Guide - Air Pumps for Aquarium Use - What Are They for and Why Are They

Necessary?. [online] Firsttankguide.net. Available at: http://www.firsttankguide.net/airpump.php [Accessed 1 Dec. 2017].

[9] Just4growers.com. (2017). Just 4 Growers: Global Garden Community. [online] Available at:

http://www.just4growers.com/stream/hydroponic-growing-techniques/airing-out-the-truth-on-dissolved-oxygen-in-hydroponics.aspx [Accessed 30 Nov. 2017].

[10] Simplyhydro.com. (2017). Simply Hydroponics - pH. [online] Available at: http://www.simplyhydro.com/ph.htm [Accessed 30 Nov. 2017].

[11] "How do I manage EC (electrical conductivity)?", Practical Hydroponics and Greenhouses. [online] Available at:

https://www.hydroponics.com.au/how-do-i-manage-ec-electrical-conductivity/ [Accessed: 20 Nov. 2017]

[12] Ulllinois.edu. (2017). Hourly Classification Rates for Engineering Services . [online] Available at:

http://www.trustees.uillinois.edu/trustees/agenda/November-14-2007-Approved-and-Reported/a027-nov-PAR-Hourly-Rate-Schedule.pdf [Accessed 26 Oct. 2017].

[13] Personal Communications. Sea of Green Hydroponics.. October 1, 2017 to Current.